s.APIError.raise_for_response(response) File "C:\Users\98317\.conda\envs\DMXAPI\...

2025年11月25日 17:20 状态: processing

🚨 错误信息

Traceback (most recent call last): File "c:\Users\98317\Desktop\Project_DMXAPI\kehu\Google\gemini-3-pro-image-preview多图融合.py", line 53, in <module> response = client.models.generate_content( ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\google\genai\models.py", line 5218, in generate_content response = self._generate_content( ^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\google\genai\models.py", line 4000, in _generate_content response = self._api_client.request( ^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\google\genai\_api_client.py", line 1388, in request response = self._request(http_request, http_options, stream=False) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\google\genai\_api_client.py", line 1224, in _request return self._retry(self._request_once, http_request, stream) # type: ignore[no-any-return] ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\tenacity\__init__.py", line 477, in __call__ do = self.iter(retry_state=retry_state) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\tenacity\__init__.py", line 378, in iter result = action(retry_state) ^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\tenacity\__init__.py", line 420, in exc_check raise retry_exc.reraise() ^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\tenacity\__init__.py", line 187, in reraise raise self.last_attempt.result() ^^^^^^^^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\concurrent\futures\_base.py", line 449, in result return self.__get_result() ^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\concurrent\futures\_base.py", line 401, in __get_result raise self._exception File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\tenacity\__init__.py", line 480, in __call__ result = fn(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^ File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\google\genai\_api_client.py", line 1201, in _request_once errors.APIError.raise_for_response(response) File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\google\genai\errors.py", line 106, in raise_for_response cls.raise_error(response.status_code, response_json, response) File "C:\Users\98317\.conda\envs\DMXAPI\Lib\site-packages\google\genai\errors.py", line 133, in raise_error raise ServerError(status_code, response_json, response) google.genai.errors.ServerError: 524 None. {'error': {'message': '', 'type': 'rix_api_error', 'param': '', 'code': 'bad_response_status_code'}}

🤖 AI解决方案

错误翻译

原文:ServerError: 524 None. {'error': {'message': '', 'type': 'rix_api_error', 'param': '', 'code': 'bad_response_status_code'}}
译文:服务器错误:524 无内容。{'错误': {'消息': '', '类型': 'rix_api错误', '参数': '', '代码': '错误的响应状态码'}}

原因分析

根本原因:Google Gemini API 服务器返回了 524 网关超时错误

详细分析

  • 错误发生在调用 client.models.generate_content() 方法时

  • 服务器端处理请求超时,导致网关返回 524 错误状态码

  • 这是一个服务器端的错误,而非客户端代码问题

  • 错误类型为 rix_api_error,表明是 API 内部处理异常
  • 解决方案

    方案1:添加重试机制

    import time
    from google.genai import errors
    
    def generate_content_with_retry(client, model, content, max_retries=3, delay=5):
        for attempt in range(max_retries):
            try:
                response = client.models.generate_content(
                    model=model,
                    contents=content
                )
                return response
            except errors.ServerError as e:
                if attempt < max_retries - 1:
                    print(f"第 {attempt + 1} 次尝试失败,{delay}秒后重试...")
                    time.sleep(delay)
                    delay *= 2  # 指数退避
                else:
                    raise e
    
    # 使用重试函数替代直接调用
    response = generate_content_with_retry(client, "gemini-pro", your_content)

    方案2:优化请求参数

    # 简化请求内容,减少处理时间
    response = client.models.generate_content(
        model="gemini-pro",
        contents=your_content,
        # 添加超时设置
        request_options={"timeout": 30000}  # 30秒超时
    )

    ️ 预防措施

    1. 实现稳健的重试逻辑

    # 使用 tenacity 库实现智能重试
    from tenacity import retry, stop_after_attempt, wait_exponential
    
    @retry(stop=stop_after_attempt(3), wait=wait_exponential(multiplier=1, min=4, max=10))
    def robust_generate_content(client, content):
        return client.models.generate_content(model="gemini-pro", contents=content)

    2. 监控和日志记录

  • 添加请求耗时监控
  • 记录失败请求的详细信息
  • 设置适当的超时时间以避免无限等待

建议:这类错误通常是暂时性的服务器问题,合理的重试策略可以有效解决。