grid <- expand.grid(nrouds = c(75, 100), max_depth = c(2, 3), eta = c(.01, .1, ....
🚨 错误信息
grid <- expand.grid(nrouds = c(75, 100),
max_depth = c(2, 3),
eta = c(.01, .1, .3),
gamma = c(.5, .25),
colsamples_bytree = 1,
min_child_weight = 1,
subsample = .5)
# 一些控制参数,重抽样方法选择5折交叉验证
ctrl <- trainControl(method = 'cv',
number = 5,
verboseIter = F,
returnData = F,
returnResamp = 'final')
# 开始调优
set.seed(123)
train.xgb <- train(x = train[, 1:8],
y = train$diabetes,
trControl = ctrl,
tuneGrid = grid,
method = 'xgbTree')
XGBoost运行的时候总产生这个错误:“错误: The tuning parameter grid should have columns nrounds, max_depth, eta, gamma, colsample_bytree, min_child_weight, subsample”,但是我的tune grid是存在这些参数的,有大佬知道是怎么回事吗
🤖 AI解决方案
错误翻译
原文:The tuning parameter grid should have columns nrounds, max_depth, eta, gamma, colsample_bytree, min_child_weight, subsample
译文:调优参数网格应包含列 nrounds、max_depth、eta、gamma、colsample_bytree、min_child_weight、subsample
原因分析
错误原因是参数名称拼写错误。在expand.grid()函数中,您将nrounds误写为nrouds(少了字母n),导致参数网格中缺少正确的nrounds列。
解决方案
修正参数名称拼写错误:
# 修正后的参数网格
grid <- expand.grid(nrounds = c(75, 100), # 修正拼写:nrouds → nrounds
max_depth = c(2, 3),
eta = c(.01, .1, .3),
gamma = c(.5, .25),
colsample_bytree = 1, # 确认拼写正确
min_child_weight = 1,
subsample = .5)
# 其余代码保持不变
ctrl <- trainControl(method = 'cv',
number = 5,
verboseIter = F,
returnData = F,
returnResamp = 'final')
set.seed(123)
train.xgb <- train(x = train[, 1:8],
y = train$diabetes,
trControl = ctrl,
tuneGrid = grid,
method = 'xgbTree')
预防措施
- 参数验证:使用
names(grid)检查参数网格的列名是否正确匹配XGBoost所需的参数名称 - IDE辅助:使用RStudio等IDE的代码补全功能,避免手动输入参数名称时的拼写错误
# 调试检查方法
print(names(grid)) # 查看实际参数名
expected_params <- c("nrounds", "max_depth", "eta", "gamma", "colsample_bytree", "min_child_weight", "subsample")
print(all(expected_params %in% names(grid))) # 检查是否全部匹配