{"args":{"description":"[models] Error: API request failed with status code 429:...
🚨 错误信息
req_id: 0e36365f03 PluginInvokeError: {"args":{"description":"[models] Error: API request failed with status code 429: {\"error\":{\"message\":\"当前分组上游负载已饱和,请稍后再试\",\"type\":\"rix_api_error\",\"param\":\"\",\"code\":\"RateLimitReached\"}}"},"error_type":"InvokeError","message":"[models] Error: API request failed with status code 429: {\"error\":{\"message\":\"当前分组上游负载已饱和,请稍后再试\",\"type\":\"rix_api_error\",\"param\":\"\",\"code\":\"RateLimitReached\"}}"}
🤖 AI解决方案
报错分析报告
1. 错误翻译
原文:"API request failed with status code 429: {\"error\":{\"message\":\"当前分组上游负载已饱和,请稍后再试\""
译文:"API 请求失败,状态码 429:{\"error\":{\"message\":\"当前分组上游负载已饱和,请稍后再试\""
2. 原因分析
这是典型的 API 速率限制错误:- 错误码:429 (Too Many Requests/Rate Limit)
- 根本原因:API 调用频率超过了服务提供商的限制阈值
- 具体表现:系统返回 "RateLimitReached" 错误,提示"当前分组上游负载已饱和"
- 影响范围:通过第三方平台(DMXAPI/rix_api)调用的AI模型服务
3. 解决方案
方案一:添加重试机制(推荐)
import time
import random
from requests.exceptions import HTTPError
def api_call_with_retry(api_func, max_retries=3, base_delay=2):
"""
带指数退避重试的API调用
"""
for attempt in range(max_retries):
try:
return api_func()
except Exception as e:
# 检查是否是速率限制错误
if "429" in str(e) or "RateLimitReached" in str(e):
if attempt < max_retries - 1:
# 指数退避 + 随机抖动
delay = base_delay * (2 ** attempt) + random.uniform(0, 1)
print(f"速率限制触发,等待 {delay:.2f} 秒后重试...")
time.sleep(delay)
continue
raise # 非速率限制错误直接抛出
raise Exception("达到最大重试次数,API调用失败")
# 使用示例
result = api_call_with_retry(lambda: your_api_function())
方案二:批量处理请求
import asyncio
from typing import List
class RateLimiter:
def __init__(self, max_calls_per_minute: int = 60):
self.max_calls = max_calls_per_minute
self.calls = []
async def wait_if_needed(self):
"""控制请求频率"""
now = time.time()
# 清理1分钟前的记录
self.calls = [t for t in self.calls if now - t < 60]
if len(self.calls) >= self.max_calls:
wait_time = 60 - (now - self.calls[0])
if wait_time > 0:
await asyncio.sleep(wait_time)
self.calls.append(now)
# 使用示例
limiter = RateLimiter(max_calls_per_minute=50) # 留出缓冲空间
4. ️ 预防措施
最佳实践:
- 对频繁查询的相同请求结果进行本地缓存
- 设置合理的缓存过期时间(TTL)
- 使用 Redis 或内存缓存减少API调用
工具推荐:
---
⚠️ 重要提醒:如果该API是通过第三方服务商调用的,请同时检查: